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Abstract—In this work, we explore the importance of sensors’
calibration in inertial navigation applications. We focus on the
case of low-cost systems, typically using MEMS inertial sensors,
where the extra calibration cost is a critical parameter. We
highlight the importance of calibration by deriving a bound of
the evolution of the attitude and velocity error as a function of
the calibration parameters’ error. Then, we use low-cost 3-axis
accelerometer and 3-axis gyroscope along with a popular pedes-
trian inertial navigation algorithm to experimentally confirm that
raw sensor’s data can be highly inappropriate for navigation
purposes. Finally, we use the MAG.I.C.AL. methodology for joint
calibration and axes alignment of inertial and magnetic sensors
to achieve high accuracy measurements resulting in a reliable
inertial navigation system.

I. INTRODUCTION

Satellite-based systems (GPS, Galileo, GLONASS etc.) are
the dominant navigation technology. Even though they provide
sufficiently accurate navigation for most applications, they all
come with the same drawbacks: they have limited refresh
rate, they don’t work in indoor environments and they are
susceptible to jamming. To overcome these limitations, sev-
eral alternative navigation technologies have been developed
during the past decades. The concurrent development of the
micro-electro-mechanical systems (MEMS) led to a significant
growth of inertial navigation systems.

Inertial navigation systems (INS) are based on inertial
sensors (accelerometers and gyroscopes) to calculate the ve-
locity, orientation and position of a moving object. They are
commonly used in a wide range of applications, from low-
cost commercial systems, to high-end military, marine and
aerospace applications. Although INS yield accurate short-
term navigation, their long-term performance is degraded,
mainly due to the heading error caused by gyroscope’s noise
and offset drift [1]. To improve the long-term performance,
some authors combine INS with other navigation technolo-
gies (mostly satellite or RF based [2], [3]) while others use
additional sensors (usually a magnetometer [1], [4] ) to correct
the estimated heading.

In the case of low-cost systems, MEMS inertial sensors are
usually preferred due to their significantly lower cost and small
size. However, a major disadvantage of MEMS inertial sensors
is their large error characteristics [1]. Thus, in order to use
them in an INS, a calibration procedure that compensates for
the deterministic part of their error is required. In addition,
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the combined use of the accelerometer’s, gyroscope’s and
maybe magnetometer’s data gives rise to the need of alignment
between the axes of the three sensors.

Although sensors’ calibration and alignment are of major
importance for an accurate INS, existing works take them for
granted and only deal with the development of the naviga-
tion algorithms. Specifically, in [5], [6], [7], [8], [9], [10]
expensive, already calibrated, commercially available sensor
modules are used to evaluate the proposed algorithms. The
authors in [2], [4], [11], [12] use custom sensor modules to
evaluate the proposed INS but don’t provide any details about
the sensors’ calibration and axes alignment.

Especially when low-cost systems are concerned, sensors’
calibration and alignment could determine the overall system’s
cost. In the case of MEMS sensors, factory calibration is not
an option as it would raise the sensors’ cost significantly. In
addition, standard after-production calibration and alignment
techniques require expensive equipment (like a turn-table) that
would also raise the overall system’s cost.

In this work we derive the attitude and velocity error
propagation equations as a function of accelerometer’s and
gyroscope’s calibration parameters. Then, we design a low-
cost inertial measurement unit (IMU) consisting of a MEMS
3-axis accelerometer and a MEMS 3-axis gyroscope. We
calibrate the inertial sensors using the recently introduced
MAG.I.C.AL. methodology [13] for joint calibration and axes
alignment of inertial and magnetic sensors, and show how
the raw sensors’ data result in large attitude and velocity
error. Finally, we use both the raw and calibrated sensors’
data along with a popular pedestrian navigation algorithm, to
experimentally demonstrate how the large error characteristics
of the MEMS sensors affect the navigation accuracy.

II. INERTIAL SENSORS’ ERROR CHARACTERISTICS AND
MEASUREMENT MODEL

There are several types of inertial sensors based on dif-
ferent operation principles and manufacturing technologies.
Although the measurement accuracy varies extremely between
different types, the basic error sources are the same for all
inertial sensors.

« Bias, or offset, is a constant error exhibited by all inertial

sensors. In most cases, it is the dominant term in the
overall error of the sensor.
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o Scale-factor error is the deviation of the input-output
gradient from unity.

o Cross-coupling error is caused by the non-orthogonality
of the sensor’s sensitivity axes due to manufacturing
imperfections.

o Random noise is the non-deterministic error caused by
both the mechanical and electronic structures of the
Sensors.

A widely accepted and highly referred measurement model
for both 3-axis accelerometer and 3-axis gyroscope is the
following [14] [1]

y=n+Tsn+Teen+h+e (1)

where y is the 3 x 1 measurement vector, n is the 3 x 1
true specific force or angular velocity vector, T,y is 3 x 3
matrix representing the scale-factor error, T,. is 3 X 3 matrix
representing the cross-coupling error, h is the 3 x 1 sensor’s
offset vector and ¢ is the 3 x 1 random error vector.

Most commonly, the compact form of (1) shown below is
used

y=Tn+h+e 2)

where T' £ I3+ Tsf + T.c, and I3 is the 3 x 3 identity matrix.

A calibration procedure compensates for the above errors
by deriving the matrix 7" and offset vector i for which the
error term in (2) is minimized.

III. INERTIAL SENSORS’ ERROR PROPAGATION IN THE
INERTIAL FRAME

In this section the propagation of inertial sensors’ error
when they are used in navigation applications is described.
In particular, we derive the error propagation equations in the
inertial frame for attitude and velocity as a function of cali-
bration parameters (1,, hy) and (T, hy) of the accelerometer
and gyroscope respectively.

A. Notation

Several different notations are used in the literature to
describe kinematic quantities. In our analysis we will use the
notation of [1]. More specifically, any kinematic quantity z,
such as acceleration, velocity, position or angular velocity, is
denoted as follows.

Y
xﬁoz

where « is the body frame, /3 is the reference frame and ~y
is the resolving frame. In addition, the frame transformation
matrix which transforms the resolving frame from « to S is
denoted as C¥.

Also note that in the rest of this work, the true value of any
quantity q is denoted as ¢ while the measured one is denoted
as q.

B. Attitude Error Propagation

The attitude error in the inertial frame is defined as:
5Ci = Cict 3)

where C~'g is the true attitude while Cj is the attitude measured
by the gyroscope. The differentiation of (3) yields

5Ci = CiCt + Cic? @
The time derivative of a coordinate transformation matrix is
Ch =050, (5)

where €2, is the cross-product matrix of the angular velocity
vector wg,,. Substituting the derivatives in (4), we get

5Ci = Ci s Ct 5C} 6)
where (2 is the difference between the cross-product matrix
of the true value of angular velocity vector Qé’b and the one of
the measured by the gyroscope angular velocity vector ng-

In our analysis we want to express dC} as a function of the
calibration parameters T}, and h,. To that purpose, we express

0€) as a function of the gyroscope’s measurement vector wfb:

00 = [Pléw Pyow P35w] — diag(dw) @)

where dw = (13 — Tg)@ — ]’Lg, P1 = [61 €3 —GQ]T, PQ =
[—63 €9 61}T and P3 = |es —eq 63]T. Note that ey, is
the k" normal vector in R

The evolution of the attitude error in time is

5Ci(t) = /0 ' Ci(r)dr + 5C4(0) ®)
Given that 6C}(0) = I3 we write
I5ci(t - 1l < [ 19Cilar ®
Taking the Frobenius norm of (6) we get
16Gi]1r < 15/|6w]l2 (10)
Using (9) and (10), we write
18C5(t) — Is|| < 15¢ (|15 — Tyllwp + [[hgl) (1D

where wp is a bound for the angular velocity magnitude and
depends on the application.
C. Velocity Error Propagation

The velocity error is defined as

V=v-Vv (12)
The derivative of (12) is
5V = Cif — 8CiCi (Taf+ ha> (13)

The evolution of the velocity error in time is derived by a
similar analysis to that of the attitude error.

V(1) < t[fo (s — Tall + I TallI6C3(8) — Lsll) + [[all]
(14
As seen in (14), the velocity error depends on both the
accelerometer’s and gyroscope’s errors.
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IV. EXPERIMENTAL RESULTS

A. Pedestrian Inertial Navigation Using Shoe-Mounted Iner-
tial Sensors

A common inertial navigation application is the pedestrian
navigation with shoe-mounted inertial sensors. In this case, a
3-axis accelerometer and a 3-axis gyroscope are mounted on
the shoe of a walking human. Using their data, the velocity,
orientation and position are calculated.

In such applications, the zero velocity update (ZUPT)
method is typically used [15] [8]. ZUPT method is based on
the fact that during the stance phase of the human walking [9],
the velocity of the shoe is zero. This information is usually
used as input to a Kalman filter [15] [8] in order to correct
the error of the velocity, orientation and position estimations.

In this work, we use the pedestrian navigation algorithm
proposed in [15] to explore the effect of sensors’ calibration
on the navigation accuracy. The proposed algorithm in [15]
provides accurate navigation using shoe-mounted inertial sen-
sors and zero velocity updates in a Kalman filter architecture.

B. Experiment Procedure

Using a low-cost IMU, we recorded accelerometer’s and
gyroscope’s measurements of a walking human. More specif-
ically a 290m walk around the campus football court was
recorded while the IMU was mounted on the shoe. In order
to explore the importance of sensors’ calibration, we recon-
structed the walked trajectory using a) uncalibrated inertial
sensors, b) calibrated accelerometer and offset compensated
gyroscope and c) fully calibrated accelerometer and gyroscope.

For the inertial sensors’ calibration, we exploited the re-
cently introduced MAG.I.C.AL. methodology. MAG.I.C.AL.
provides unified calibration and joint axes alignment of 3-axis
magnetometer, 3-axis accelerometer and 3-axis gyroscope.
MAG.I.C.AL. compensates for all linear time-invariant distor-
tions such as scale-factor, cross-coupling and offset, including
the soft-iron and hard-iron distortion of the magnetometer.
It is applied in a simple 15-step sequence of approximate
placements and rotations of the sensors, made by hand, without
requiring any special piece of equipment.

C. Error Propagation

In Section III a bound for the evolution of attitude error
as a function of accelerometer’s and gyroscope’s calibration
parameters is derived. Using the calibration parameters cal-
culated using MAG.I.C.AL. methodology and the analysis of
Section III we can explore the effect of calibration on the
attitude and velocity error propagation.

In Figure 1 the evolution of attitude error in time is pre-
sented. As seen in Figure 1 the attitude error rises significantly
after a few seconds when using uncalibrated sensors. Ac-
celerometer’s calibration and gyroscopes offset compensation
improves the error evolution significantly but eventually large
attitude errors are accumulated.

In Figure 2 the evolution of velocity error in time is
shown. As in the case of attitude, the velocity error also
rises significantly after a few seconds when using uncalibrated
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Fig. 1: Evolution of attitude error in time.
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Fig. 2: Evolution of velocity error in time.

sensors. Also note that, according to Figure 2, the gyroscope’s
error is the dominant error factor in the velocity error.

D. Trajectory reconstruction

The reconstructed trajectory using raw sensor’s data is
depicted in Figure 3a. As seen in Figure 3a, raw sensor’s data
are highly inappropriate for navigation purposes.

For accelerometer’s calibration, there are several easy-to-
apply methods without requiring any special piece of equip-
ment [16], [13], [17]. In addition, although gyroscope’s cali-
bration is not trivial without using appropriate equipment, it’s
offset is easy to remove as it is just the sensor’s output while
it is still. By doing so, the navigation results are significantly
improved as shown in Figure 3b.

In Figure 3c the reconstructed trajectory using calibrated
inertial sensors is presented. The trajectory shown in Figure
3c, exhibit a position error of about 5m in a 290m walk. The
resulted navigation performance may not be state-of-the-art but
it is actually impressive considering that we used very low-cost
sensors and no special calibration equipment. In addition, the
navigation algorithm used in this work is a basic algorithm
using only inertial sensors. More complicated algorithms as
well as the use of extra sensors (such as magnetometer) would
provide even smaller position error.

Note that as seen in both Figures 3b and 3c the GPS
sampling rate is quite low causing sharp corners in the
reconstructed trajectory.

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on January 08,2021 at 09:03:16 UTC from IEEE Xplore. Restrictions apply.



T
® Start
o ® End |
b 4
-2 4
~
2
)
gl ]
>
4 4
-5 4
-6 4
-7
-2 10
T
0 ® Start
[ ®End |
20 B
B
ok 4
bl
20 - +
[—Fully Calibrated Accelerometer - Offset, Compensated Gyroscope]
-40 - |—GPs -
Il T T T 1 Il Il
-120 -100 -80 -60 -40 -20 0
X (m)
T
0 ® Start
i B End |
20 B
g
< oL |
>
20 - B
[—Fully Calibrated Accelerometer and Gyroscope
-40 -|—GPS B
L T T 1 L L L
-120 -100 -80 -60 -40 -20 0
X (m)
(©

Fig. 3: Reconstructed trajectory using a) uncalibrated inertial
sensors, b) calibrated accelerometer and offset compensated
gyroscope and c) fully calibrated inertial sensors

V. CONCLUSION

In this work we highlighted the importance of the inertial
sensors’ calibration when they are used in navigation appli-
cations. We derived a mathematical model for the evolution
of the attitude and velocity errors as a function of the inertial
sensors’ calibration parameters. Using it we demonstrated how
using uncalibrated sensors, large errors in attitude and velocity
are accumulated over time. Then we used MAG.I.C.AL.
methodology for joint calibration and axes alignment of the
inertial sensors to compensate for the aforementioned errors.
Finally we used a popular pedestrian navigation algorithm to
experimentally demonstrate the effect of the sensors’ errors
in the navigation procedure. Both mathematical analysis and
experimental results indicate that inertial sensors’ calibration
is of critical importance when they are used in navigation
applications.
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