
Deterministic Finite State Machines for Stochastic
Division in Unipolar Format

Nikos Temenos and Paul P. Sotiriadis
Department of Electrical and Computer Engineering

National Technical University of Athens, Greece
E-mail: ntemenos@gmail.com, pps@ieee.org

Abstract—Stochastic computing has been successfully applied
in a plethora of applications, including machine learning, com-
puter vision and soft coding/decoding, due to its low complexity,
chip area, and power consumption advantages, as well as its
tolerance to soft errors. Among the four fundamental numerical
operations, addition, subtraction and multiplication are sim-
ple to realize stochastically. Division however is significantly
more challenging and complex. This work introduces a new
architecture for stochastic division in unipolar format using a
deterministic finite state machine. In contrast to the existing
architectures, the proposed divider does not require any internal
stochastic number generator, which makes it more versatile,
compact and easy to implement. The divider’s accuracy is defined
based on mean absolute error metrics and it is estimated using
MATLAB simulation. Applications of the proposed divider in
image processing are presented demonstrating its accuracy and
efficiency in realistic systems.

Index Terms—Stochastic Computing, Stochastic Divider,
Stochastic Circuits

I. INTRODUCTION

Unconventional computing methods have gained increased
attention in the design of modern Digital Signal Processing
(DSP) and arithmetic units [1]–[3]. Among them, the encoding
of information in the form of stochastic sequences and the
processing of them, known as Stochastic Computing (SC) [4],
is a promising one [1]–[3], [5]–[7].

Considering the stochastic nature of the processed signals,
SC is inherently error tolerant; soft-errors, such as bit flips, do
not significantly affect the result of calculations. Furthermore,
the implementation of basic arithmetic operations is performed
by standard logic cells, for example an AND gate in the case
of multiplication [2]–[4].

In order to be processed by SC elements, a binary number
must be first converted into the stochastic domain. This proce-
dure is executed by a Stochastic Number Generator (SNG), as
shown in Fig. 1. The Linear-Feedback Shift Register (LFSR)
operates as a pseudo-random number generator and produces
on each clock cycle a k-bit random word. Afterwards, it
compares with the selected binary number of the same length
(k-bit) and creates the stochastic sequence. The length of the
generated sequence, N = 2k, is also referred to as stochastic
precision of the sequence [2].

The generated stochastic sequence is finite (word) and rep-
resents a real number in range [0, 1], i.e. {Cn, n = 1, 2, ..., N}.
Here, {Cn} are considered to be independent and identically
distributed (i.i.d.) Bernoulli random variables, whose expected

Fig. 1. Stochastic Number Generator (SNG) circuit

value is E[Cn] = p. The value of the word is defined as the
average of ones in it, namely,

C =
1

N
(C1 + C2 + · · ·+ CN) .

Undoubtedly, the stochastic precision N is directly associated
with the accuracy of the word, which is increased at the cost
of additional clock cycles.

Signed number representation is well supported in SC for
positive and negative numbers. The former is represented in
range [0, 1], named unipolar format, whereas the latter belongs
in range [−1, 1], called bipolar format. Mapping from unipolar
to bipolar, is achieved by Pr(Cb = 1) = 2·Pr(Cn = 1)−1. In
addition, according to the format used, each SC element imple-
ments a different function. Multiplication in bipolar format is
performed by XNOR, opposing the AND gate in the unipolar
format. SC elements, fall under the principle of combinational
logic and thus it is expected that realization of non-linear
functions, like division, can be extremely challenging [8]–[10].

Current work proposes a new stochastic divider architecture
in unipolar format. Its operation is based on a Finite State
Machine (FSM), which relies on input signals and current state
to produce a directly stochastic output, without requiring an
additional SNG, by exploiting a binary register.

In the following section, the algorithm of the proposed
stochastic divider architecture is provided accompanied by a
brief comparison with the original one. In section III, simula-
tion results regarding performance in terms of computational
accuracy are shown. A proof-of-concept with two applications
in digital image processing, is demonstrated in section IV.
Finally, in section V, our work is concluded.

II. STOCHASTIC DIVISION

The proposed architecture is inspired by the divider archi-
tecture in Fig. 2, introduced in [4]. Inputs {Xn} and {Yn}

978-1-7281-3320-1/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on January 08,2021 at 09:03:17 UTC from IEEE Xplore. Restrictions apply.

are generated by SNGs while {Zn} is the output, under
the assumption that E[Xn] ≤ E[Yn] with E[Yn] ∈ (0, 1].
The main concept here is that the feedback loop of the
architecture enforces the equality Xn = Zn−1 · Yn in a
statistical sense and essentially converting the operation of
division into multiplication.

Central part of the divider is the k-bit up/down counter.
At the beginning of the operation, the register of the counter
is preset to a fixed initial value, c, independent of the input
sequences and their mean values. The selection of c should
be done according to the range of E[Xn]/E[Yn] in each
application, as it impacts the convergence rate of the loop.

The combination of Xn = 1 and Un , Zn−1 · Yn = 0
increases the counter’s value by 1-bit, whereas the case Xn =
0 and Un = 1, decreases it by 1-bit. For the remaining input
combinations the counter holds its current value. Finally, the
SNG converts the binary number into a stochastic 0, 1 output.

Xn

Yn

Zn

Un
k-bit

counter

LFSR
<

clk
k

R

R<

k
1

SNG

D

Zn-1

Up

Down

Fig. 2. The original Divider introduced in [4]

Although the divider operates properly, the time needed
for it to converge, can be extremely long [2], [8]. As one
would expect, this is the case when the initial preset value,
with respect to the number of states, i.e c/2k, is far from
E[Xn]/E[Yn].

A. Proposed Stochastic Divider Architecture

To address the convergence rate issue of the original divider,
we propose the new architecture in Fig. 3. The operation
principle of the original divider, i.e. the feedback loop and the
logic of up and down counting of the bits in the sequences
{Xn} and {Un}, respectively, is preserved. The SNG however
is replaced by a comparison of the counter’s value with 0.

As with the original architecture, here the stochastic division
{Xn} by {Yn} is transformed to the multiplication of {Yn}
with {Zn} and stochastic equation of the result with {Xn}.
The loop forces this stochastic equation and the counter, counts
the 1s ”owned” to the output {Zn}.

Again, the value of the counter, Sn, transitions within the
M = 2m states {0, 1, ...,M−1} according to the inputs, {Xn}
and {Un}. It counts +1 if the inputs are Xn = 1 and Un = 0,
and, −1 if the inputs are Xn = 0 and Un = 1; it maintains
its value otherwise. Since Un = Yn · Zn−1, the iteration
will always result in non-negative values of the counter. To

account for the possible overflow of the counter the complete
expression of the iterative value of Sn is

Sn = min
(
Sn−1 + Xn − Yn · Zn−1 , M − 1

)
.

Up

Down

m-bit

counter

Xn

Yn

Sn>0

D

m

Un

1

Zn-1

Zn

Fig. 3. Proposed Stochastic Divider Architecture

B. Finite State Machine Model of the Proposed Divider

The operation of the proposed stochastic divider is modeled
by the Finite State Machine (FSM) shown in Fig. 4.

0 2 M-11

Xn = 1

Yn = 0

Xn = 1

Yn = 0Xn=1Xn=0

Xn = 0

Yn = 1

Xn = 0

Yn = 1

Xn = 0

Yn = 1

Xn = Yn

Xn = Yn

Xn = 1,Yn = 0

 or

 Xn = Yn

Zn=0 Zn=1 Zn=1 Zn=1

Fig. 4. Finite State Machine of the proposed Stochastic Divider

To explain the derivation of the FSM based on the architec-
ture, we consider the counter’s value Sn in {0, 1, ...,M − 1},
M = 2m at time n. Let
(a) Sn−1 = 0. Then, we see in both the architecture and the

FSM that Zn−1 = 0. In the architecture this implies Un =
0 and therefore Sn = Xn. This is captured in the FSM by
the transition to Sn = 1 if and only if Xn = 1.

(b) Sn−1 ∈ {1, 2, ...,M − 2}. Then, in both the architecture
and the FSM it is Zn−1 = 1. In the architecture this
implies Un = Yn and therefore Sn = Sn−1 +Xn−Yn, in
Real Algebra arithmetic. This is captured in the FSM by
the transition from Sn−1 to Sn = Sn−1+1 if Xn = 1 and
Yn = 0, or from Sn−1 to Sn = Sn−1 − 1 if Xn = 0 and
Yn = 1, or, no transition, i.e. Sn = Sn−1 if Xn = Yn.

(c) Sn−1 = M − 1. Then, again in both the architecture
and the FSM it is Zn−1 = 1. In the architecture this
implies that Un = Yn but in this case it is Sn =
min (Sn−1 + Xn − Yn,M), in Real Algebra arithmetic,
due to the register’s overflow in case of Xn − Yn = 1.
This is captured in the FSM by maintaining Sn = M − 1
if Xn ≥ Yn and Sn = M − 2 if Xn = 0 and Yn = 1.

C. Performance of the Proposed Divider

The output accuracy of the proposed stochastic divider is
justified using Monte Carlo simulation. For mean value of X

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on January 08,2021 at 09:03:17 UTC from IEEE Xplore. Restrictions apply.

ranging from 0.1 to 0.9 with step of 0.1 and for mean value
of Y ranging from X to 0.9 with step of 0.1, we generate
K = 10, 000 pairs of random 0, 1 sequences {Xn} and {Yn}
such that E[Xn] = X and E[Yn] = Y . For every pair i =
1, 2, . . . ,K of sequences {Xn} and {Yn} , we calculate the
time averages X̄i , Ȳi and Z̄i of the input and output sequences
respectively. Then, we derive the Mean Absolute Error (MAE)
between the output of the proposed divider and the numerical
division, X̄i/Ȳi, namely

MAE =
1

K

K∑
i=1

|Z̄i − X̄i/Ȳi|. (1)

The results of the procedure for N = 128 and 256 bit
stochastic precision using an m = 5 bit register are shown
in Fig. 5. The MAE dos not exhibit a uniform behavior. It
is relatively high for small values of E[Xn] and E[Yn] and
it gradually decreases when the expected values of the inputs
increase.

0

0.05

0.1

0.15

0.2

0.4

0.6

0.8

0.80.60.40.2

Fig. 5. Mean Absolute Error of the proposed stochastic divider for two
selected N bit sequence lengths

D. Comparison of the Convergence Rate

A comparison of the converging rate of the division pro-
cesses of the two architectures is shown in Fig. 6. We
generated 1, 000 pairs of random sequences {Xn}, {Yn} with
expected values equal to E[Xn] = 0.25 and E[Yn] = 0.85 re-
spectively, resulting in E[Zn] ≈ 0.2941. In both architectures,
the register size is k,m = 8 bits.

The register of the proposed architecture has, by default,
initial value S0 = 0 independently of the mean values of

the input sequences. In the original architecture however, the
initial value c of the register must be preset according to
E[Zn]. Therefore, we considered three cases to investigate
its converging rate: 1) we intentionally set c = 20, i.e.
c/2k = 0.0781, a value far away of E[Zn], 2) we set c = 65,
yielding c/2k = 0.2539 which is very close to E[Zn] and 3)
we set the almost equal to E[Zn] value of c = 75, resulting
in c/2k = 0.2930.

As shown in Fig. 6, especially when c/2k is far from
E[Xn]/E[Yn], the original divider approximates the desired
output after a considerable number of clock cycles. Never-
theless, if the offset is minimal, it does not experience severe
converging issues. Eventually the converging rate is minimized
in the case when c/2k is almost equal to the desired output.
On the other hand, the proposed stochastic divider calculates
the result relatively fast without requiring an excessive amount
of states.

10
0

10
1

10
2

10
3

10
4

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Fig. 6. Comparison of convergence in clock cycles between the original [4]
and the proposed stochastic divider architecture. Output averaged over 1, 000
random input sequences pairs. The original divider starts with 3 different
initial conditions

III. APPLICATIONS OF THE PROPOSED DIVIDER IN
DIGITAL IMAGE PROCESSING

Applications in the field of digital image processing can
benefit well from SC. The main advantage comes from massive
parallelism; processing can be applied pixel-wise throughout
an entire image [2], [11]–[13]. Furthermore, the cost in com-
putational cycles is typically low, usually N = 256 when
using k = 8 bit numbers, but varies according to the design
requirements.

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on January 08,2021 at 09:03:17 UTC from IEEE Xplore. Restrictions apply.

We demonstrate the efficacy of the proposed stochastic
divider for digital image processing using two applications
in Matlab. The first one, corresponds to pixel division, which
reduces the dynamical scale of an image [14], while the second
to the data normalization algorithm [14].

Application 1: We select a Matlab built-in grayscale image
with high contrast, i.e. the intensities span across the entire
range of [0, 255]. After mapping them to range [0, 1], we apply
our algorithm on each pixel Pm,n across the entire image of
size m × n and scale each one down by a constant factor of
0.85, as a test case.

The stochastic precision bits selected are N = 512 with a
register of m = 5 bits. As a figure-of-merit for the comparison
between the stochastic divider and the simulated division,
we calculated the peak signal-to-noise ratio (PSNR). For the
results in Fig. 7 it corresponds to PSNR = 30.96dB.

Fig. 7. Left: pixel division using the proposed stochastic divider of precision
N = 512 bits Right: Matlab simulated division

Application 2: Image (or data) normalization, is a technique
used to expand the pixel intensity values of a low-contrast
image into its full range [14]. The linear normalization for
each pixel Pm,n is performed according to

Pnewm,n = (Pm,n − a) · bnew − anew
b− a

+ anew, (2)

where a and b denote the minimum and maximum pixel
intensity values respectively.

In our example, a default low-contrast image in grayscale
was selected and simulated as proof-of-concept. First, we
identified the reduced range of the grayscale image [a, b] and
mapped it to the corresponding range [0, 1].

Each pixel value, was then normalized to the new desired
range [anew, bnew], using the proposed stochastic divider on
each pixel Pm,n, after subtracting the former with the image’s
minimum intensity a. Here, the new intensities anew and bnew,
were selected to be the bottom 1% and top 99% of [0, 1].

Note that, in our case the quantity bnew − anew was very
close to 1 and thus the multiplication from eq. (2) was omitted.
The same applied to the addition with anew, since it was a
negligible value and would not significantly affect the result
of the calculation. Otherwise, if bnew−anew was not close to 1,
an AND gate would be required to perform the multiplication
as well as the addition of the division’s result with anew.

Each pixel was represented with a sequence length of
N = 1024 bits and the register’s size was equal to m = 6 bits.
The output image was then compared with the corresponding
calculation performed by Matlab’s imadjust function [14],
while the results of the procedure, yield a PSNR = 32.78dB.
In Fig. 8 the image normalization performed by the two
methods is shown accompanied by the original image for
comparison.

Fig. 8. Left: Original low-contrast image Middle: image normalization
using the proposed stochastic divider with N = 1024 bits Right: Matlab’s
normalization using imadjust function [14]

IV. CONCLUSION

A new architecture for stochastic division in unipolar format
using FSMs was presented. It has the advantage that it does
not need the hardware costly stochastic number generator
which was necessary in previous architectures. Furthermore,
it achieves satisfactory mean absolute output error, even with
relatively small number of stochastic precision bits as well
as fast convergence rate. Two applications of the proposed
stochastic divider architecture in digital image processing
demonstrated its effectiveness.

ACKNOWLEDGEMENTS

The research work was supported by the Hellenic Founda-
tion for Research and Innovation (HFRI) under the HFRI PhD
Fellowship grant (Fellowship Number:1216).

The authors acknowledge financial support from Weasic
Microelectronics S.A. for covering traveling and conference
attendance expenses.

REFERENCES

[1] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 12, no. 2,
May 2013.

[2] A. Alaghi, W. Qian, and J. P. Hayes, “The promise and challenge of
stochastic computing,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 37, no. 8, pp. 1515 – 1531,
Aug. 2018.

[3] W. J. Gross and V. C. Gaudet, Stochastic Computing: Techniques and
Applications. Springer, International Publishing, 2019.

[4] B. R. Gaines, Stochastic Computing Systems. Springer, Boston, MA,
1967.

[5] S. Liu, H. Jiang, L. Liu, and J. Han, “Gradient descent using stochastic
circuits for efficient training of learning machines,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 11, pp. 2530 – 2541, Nov. 2018.

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on January 08,2021 at 09:03:17 UTC from IEEE Xplore. Restrictions apply.

[6] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, and W. J. Gross,
“Vlsi implementation of deep neural network using integral stochastic
computing,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 25, no. 10, pp. 2688 – 2699, Oct. 2017.

[7] N. Saraf and K. Bazargan, “Polynomial arithmetic using sequential
stochastic logic,” in IEEE International Great Lakes Symposium on VLSI
(GLSVLSI), Boston, MA, USA, May 2016.

[8] T. Chen and J. P. Hayes, “Design of division circuits for stochastic
computing,” in IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), Pittsburgh, PA, USA, Jul. 2016.

[9] N. Temenos and P. P. Sotiriadis, “A new technique for stochastic division
in unipolar format,” in IEEE International Conference on Modern
Circuits and System Technologies (MOCAST), Thessaloniki, Greece,
May 2019.

[10] D. Wu and J. S. Miguel, “In-stream stochastic division and square root

via correlation,” in Proceedings of the 56th Annual Design Automation
Conference 2019 (DAC), Las Vegas, NV, USA, Jun. 2019.

[11] P. Li and D. J. Lilja, “Using stochastic computing to implement digital
image processing algorithms,” in IEEE 29th International Conference
on Computer Design (ICCD), Amherst, MA, USA, Oct. 2011.

[12] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. D. Riedel, “Computation
on stochastic bit streams digital image processing case studies,” IEEE
Transactions on Very Large Scale Integration Systems (VLS), vol. 2,
no. 3, pp. 449–462, Apr. 2014.

[13] A. Alaghi, C. Li, and J. P. Hayes, “Stochastic circuits for real-time
image-processing applications,” in IEEE 50th ACM/EDAC/IEEE Design
Automation Conference (DAC), Austin, TX, USA, May 2013.

[14] R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Process-
ing Using Matlab, 2nd ed. Gatesmark Publishing, 2009.

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on January 08,2021 at 09:03:17 UTC from IEEE Xplore. Restrictions apply.

