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Abstract—A time-dependent, flexible, 2-dimensional fine tho-
racic Finite-Element model for continuous lung Electrical
Impedance Tomography (EIT) imaging is presented. It can be
used as a tool to identify lung EIT hardware specifications,
such as minimum frame rate, number of electrodes and noise
requirements, as well as for prior evaluation of EIT recon-
struction algorithms, before applying in-vivo data. The model
is parameterized with respect to electrodes’ characteristics, the
measuring protocol, structural and temporal properties of the
thoracic tissues. It is implemented in FEMM using a script gen-
erated by MATLAB code, while the measurements are acquired
also by MATLAB. The electrodes’ contact impedances, as well as
the changes in electrical and geometric properties of the thoracic
tissues due to breathing and perfusion, during each particular
measuring frame, are taken into account.

Index Terms——Electrical Impedance Tomography, dynamic
thoracic model, lungs, breath, circulation, F.E.M., measurement

I. INTRODUCTION

Electrical Impedance Tomography (EIT) is a radiation-free,

non-invasive and fast medical imaging technique, in which a

small amplitude, medium frequency (kHz) and safety-standard

current is applied through an electrode array in the under

examination domain. From the raw voltages acquired, a con-

ductivity distribution map of the subject’s interior is estimated.

EIT is safer, faster and cheaper than Computed Tomography

(CT) or Magnetic Resonance Imaging (MRI), while offering

portability and exceptional temporal resolution. This makes

EIT sufficient for continuous monitoring applications, such as

real-time lung imaging of patients with respiratory failure, that

require mechanical ventilation, or neonates that should never

be subjected to any ionizing radiation [1], [2]
Despite its remarkable capabilities in applications that re-

quire sufficient temporal resolution, EIT lacks adequate spatial

resolution and robustness in noisy measurements. Therefore,

carefully designed and high quality performance hardware

systems are deployed in order to achieve high SNR level bio-

signals. Over the last 40 years of EIT development, important

steps have been accomplished to this direction, with the im-

plementation of high performance academic and commercially

available, generic and application targeted systems [2], [3],

[4]. Moreover, significant research has been performed in the

image reconstruction problem formulation and post-processing

algorithms [1], [5]. However, EIT has not yet become widely

applicable in medical equipment.
As a result, there is a lack of available EIT in-vivo data,

relative to other imaging techniques, which is essential for

the validation of reconstruction algorithms, the determination

of system standards, comparisons and even training Machine

Learning structures that are currently gaining popularity in EIT

applications [6], [7]. Recently, some notable efforts have been

made for the classification of open-source EIT data; however,

there is still a large field for new investigations [8].

Absence of medical data makes the usage of accurate

simulation models necessary for the evaluation and testing

of reconstruction approaches. Although numerous accurate

F.E.M. structures have been utilized for many applications,

in ventilation Time-Difference EIT (Td-EIT) imaging, most

of them are actually reduced to two extreme states: full-

inhalation and full-exhalation of the lungs ignoring all in-

between instances [9], or changes during an individual frame

measurement [5]. Furthermore, many of them do not consider

the shape-changes of both the boundary (and hence the exact

electrode positions) and the tissues during breathing. What

actually happens in lung EIT monitoring is that each measur-

ing frame needs a time interval to be recorded. During this

space, both electrical and geometric properties are continu-

ously changing. Therefore, for modest frame rates (< 30fps),

each set of measurements per frame can not be considered as

an EIT “snapshot”.

Hence, a thoracic-EIT simulation model which includes nu-

merous shape, conductivity and permittivity states is essential

for observing EIT images’ behavior through various frame

rates, correlated with other parameters such as the electrode

number, bio-signal noise levels and measurement pattern. This

view can lead to useful conclusions for both the design and the

functional parameters of a ventilation-monitoring EIT system.

In this paper, a highly tunable, two-dimensional dynamic

thoracic F.E.M. model is presented, which includes the fol-

lowing tissues: skin and fat, bones, lungs, muscle and heart.

The electrodes’ number and characteristics, structure geom-

etry, breathing times and Heart Beat Rate (HR) as well as

the Frames Per Second (FPS) and measuring strategy (skip

protocol [10]) can be initially defined. Collapsing regions can

also be defined. The time-variant model is implemented based

on CT images by using MATLAB and FEMM software tools

in the following way: a .lua script is created by a MATLAB

code and executed in the FEMM software, where a particular

shape, conductivity and permittivity state of the thorax is

sketched at each time step. The shape and position states of

all tissues except heart, are determined by the corresponding

ventilation cycle states, while conductivity and permittivity

961

2020 IEEE 20th International Conference on BioInformatics and BioEngineering (BIBE)

2471-7819/20/$31.00 ©2020 IEEE
DOI 10.1109/BIBE50027.2020.00163

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on January 08,2021 at 09:03:11 UTC from IEEE Xplore.  Restrictions apply. 



are specified by the superposition of ventilation and blood

circulation cycles.
This paper is organized as follows. In section II, the model’s

parameters and properties are extensively described. In section

III, the process performed for the model’s execution and

measurement collection is presented. Furthemore, in section

IV, time evolution simulation results are displayed and com-

pared for selected initial parameters. Finally, in section V, the

conclusion is written.

II. EIT MEASUREMENT PRINCIPLES

Although different types of measuring techniques have been

developed, the most conventionally used is the current skip-m,

voltage skip-n protocol [10]. In a N -electrode EIT system, a

bipolar AC current source is applied to two electrodes with a

gap of m electrodes between them, while differential voltages

are acquired from two other electrodes, at a distance of n
electrodes between each other (tetrapolar measurement). After

the voltage measurements are taken, the bipolar source is

shifted to the next electrode pair and potentials are collected in

a serial or parallel way. The process described above continues

for all N current electrode pairs and is briefly demontrated in

Fig. 1.

el1 el2elm+2elm+3elkelk+1elk+n+2elk+n+3
elN ...

......

...

im electrodes

n elecs
Vout

el1 el2elm+2elm+3elkelk+1elk+n+2elk+n+3
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......
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III IV
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Fig. 1: Explanatory schematic of the current skip-m, voltage skip-n
pattern. I: 1st current injection, voltage measurement between the k-th
and (k+n+2)-th electrodes (leaving a gap of n electrodes). II: Same
current injection and next voltage measurement (between the (k+1)-
th and (k + n+ 3)-th electrodes). III: Next current injection (source
on 2nd and (m + 3)-th electrodes), voltage measurement between
the k-th and (k + n + 2)-th electrodes. IV: Same current injection,
next voltage measurement (between the (k+1)-th and (k+n+3)-th
electrodes).

For each current electrode pair injection, h = N−3 voltage

measurements are acquired when m = n or h = N − 4,

in case m �= n. Therefore, for all current source positions,

a total numberl of N · h voltage measurements is taken,

which together create a single EIT measurement frame and

are utilized in order to extract a static image through an

inverse reconstruction algorithm. If fr denotes the imaging

frames per second (fps), then the total time needed for a

frame is tfr = f−1
r . For our model, we assume that the

time interval between two continuous current electrode-pair

position changes is a discrete time step tstep = tfr/N .

However, to compensate for modelling errors, differential

frame imaging in time or frequency domains (Td-EIT or Fd-

EIT) is extensively adopted [1], where an initial frame is

utilized as reference. ventilation monitoring is one of the most

widespread applications of Td-EIT, where L measurement

frames are needed for the reconstruction of L − 1 images.

Since the reference is usually the first frame, lung Td-EIT

does not reveal the absolute conductivity distribution of the

examined thoracic domain. Instead, it illustrates an estimation

of the conductivity variations, compared to the first frame each

time. This can provide temporal information for pulmonary

operation over time which in these applications is more

important than real conductivity values. The latter can be later

approximated by applying appropriate a-priori data about the

corresponding tissue conductivities.

III. MODEL STRUCTURE AND PARAMETERS

The two-dimensional thoracic model implemented repre-

sents a specific cross-section of the thorax. Although the actual

thoracic geometry is three-dimensional and many 3D models

have been utilized for EIT reconstruction algorithm evaluation

[5], no models that include temporal tissue boundary and

admittance behavior during particular frames exist in the

literature. The development of a high temporal resolution

model needs to be primarily in 2D due to the large numerical

complexity of the problem, caused by continuous reshaping

and remeshing.

A. Tissue Movement

The model described has a dynamic behavior during each

EIT simulation. The boundaries of the skin and lung tissue, as

well as the position of the chest-placed electrodes and bones

(ribs and vertebra) are assumed to synchronously and gradu-

ally change between two initially defined constant states, due

to the breathing process. The first one indicates the deflated

(minimum air in lungs) condition while the second one denotes

the fully inflated case (maximum air). The boundary deviation

of the lungs is set larger than in the case of the ribs and

electrodes’ positions, while the number of discrete steps (total

positions) between inhalation and exhalation is expressed by:

P =
N · tbr · fr

2
(1)

where tbr is the time needed for a single breath cycle.

Each model which describes tissue (except the heart), skin

or electrode boundary consists of a time-variant n-polygon,

represented by a point sequence Bn(t) = [bi(t)], where

i = {1, 2, ..., n} corresponds to the ith point. We consider
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that Binh
n = [binhi ] and Bexh

n = [bexhi ] are the initially defined

boundary point positions at the exact times of inhalation and

exhalation respectively. Each point bi(t) = (xbi(t), ybi(t))
has a total deviation of Dxi =

∥∥binhi − bexhi

∥∥, and the

corresponding space step during tstep is calculated by:

dxi =
Dxi

P
(2)

which for the sake of simplicity is assumed to be time-

proportional. Hence, dxi denotes the shift bi(tj+1) − bi(tj),
with tstep = tj+1− tj of a polygon’s point bi during the time

that current is injected from a single electrode pair.

The heart tissue boundary can be described by a polygon

point sequence Hn(t) = [hi(t)], where i = {1, 2, ..., n} also

corresponds to the ith point. At the diastolic and systolic-end

states the heart boundary polygon gets the following sequence

values: Hd
n = [hd

i ] and Hs
n = [hs

i ]. For each heart boundary

polygon point, the total deviation is Dhi =
∥∥hd

i − hs
i

∥∥ and

the space step during tstep is given by:

dhi =
2Dhi

N · tpulse · fr (3)

where tpulse is the duration of a single heart beat. The total

positions of the heart boundary points can be calculated in the

following way:

Q =
N · tpulse · fr

2
(4)

It is noted that the heart tissues’ deviation should be chosen

relatively smaller than the lung tissues’ one.

B. Admittance temporal behavior

During the pulmonary and cardiac cycles, apart from the

tissues’ shapes and positions, significant changes are also

detected at most of the admittances.

The most intense variations take place in the lungs, where

conductivitty σ and permittivity ε depend on their volume and

their air content. A less important change in both σ and ε is

caused by blood flow in lungs. Thus, their admittance can be

expressed as a function of the pulmonary and circulation cycle

states each time.

To set the pulmonary-cycle related lung’s admittance, we

first assumed that each lung’s relative volume F changes

piecewise linearly with timesteps 1 ≤ i ≤ 2P during a single

breathing period (t1 ≤ ti ≤ t2P ):

Fi =

{ 3
P+1 i+

3
P−1 + 4, if 1 ≤ i ≤ P

− 3
P+1 i− 6P+3

P+1 + 4, if P ≤ i ≤ 2P

}

This piecewise linear function here has been defined for

simplicity, since the true dependence of air volume F from

time is obviously more complex and might depend on each

particular breath’s characteristics. The air-related conductivity

of a lung as a function of its air volume can be approximated

by [11]:

σl,air = K1

(
0.85sb
w

+ 0.03si

)
32F + 4.5

(32F + 9)2
+K2 (5)

Where sb, w and si are parameters related with morphological

lung properties [11] and are selected as sb = 0.5, w = 1.5

and si = 2 (mean values). K1 and K2 are frequency related

parameters and are properly chosen in order to scale σl,air

between the absolute inflated (σl,air(f, Fmax)) and deflated

(σl,air(f, Fmin)) lung conductivity values for the used mea-

suring frequency f , as given from [12], [13]. In case of the

air-related lung permittivity, the following approximation has

been performed [11]:

εl,air = L1

(
0.85erb

w
+ 780F 1/3erm

)
32F + 4.5

(32F + 9)2
+L2 (6)

Where erb and erm are also morphological lung parameters,

selected as 10000 and 10, respectively [11]. L1, L2 scale the

permittivity between the corresponding inflated and deflated

values at the chosen frequency, defined in [12], [13]. The air-

related lung admittance value is:

γl,air = σl,air(f, F ) + j2πfεl,air(f, F ) (7)

The lungs admittance variation due to blood circulation is

assumed to be a piecewise linear function for t1 ≤ tj ≤ tpulse:

δσj
l,blood =

⎧⎨
⎩

Δσbo

Q j, if 1 ≤ j ≤ Q

−Δσbo

Q j +Δσbo, if Q ≤ j ≤ 2Q

⎫⎬
⎭

Where Δσbo refers to the initially defined total lung conductiv-

ity variation due to blood circulation (10 - 20 times lower than

air-related changes, 0.005 - 0.01 S/m [9]). The corresponding

relative permittivity change is defined as:

δεjl,blood =

⎧⎨
⎩

Δεbo
Q j, if 1 ≤ j ≤ Q

−Δεbo
Q j + 2Δεbo, if Q ≤ j ≤ 2Q

⎫⎬
⎭

Δεbo refers to the initially defined total lung permittivity

variation due to blood circulation (200 - 500 F/m [9]).
While pulmonary cycle is at state i, 1 ≤ i ≤ 2P and cardiac

cycle at state j, 1 ≤ j ≤ 2Q, we write the total admittance of
each lung:

γi,j
l = γi

l,air+δγj
l,blood = σi

l,air+δσj
l,blood+j2πf(εil,air+δεjl,blood)

(8)

The heart admittance is assumed to change periodically and

piecewise linearly. Thus:

σj
heart =

⎧⎨
⎩

σho − Δσho

Q j +Δσho, if 1 ≤ j ≤ Q

σho +
Δσho

Q j −Δσho, if Q ≤ j ≤ 2Q

⎫⎬
⎭

and

εjheart =

⎧⎨
⎩

εho − Δεho

Q j +Δεho, if 1 ≤ j ≤ Q

εho +
Δεho

Q j −Δεho, if Q ≤ j ≤ 2Q

⎫⎬
⎭

where σho and εho are the base inner heart conductivity

and permittivity (approximately 0.4-0.5 S/m and 5 · 104 F/m

respectively [12], [13]), while Δσho and Δεho refer to the

conductivity and permittivity changes of the heart due to blood

presence (fixed to 0.025 S/m and 2000 F/m respectively).

Near the heart boundary, the myocardium muscle is defined,

which consists of a frequency depended conductivity [14]:

σmc(f) = 9 · 10−8 · f + 0.168 (9)
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Fig. 2: Simplified sketch of the dynamic thoracic model. The inhalation and exhalation end, as well as the heart’s systolic and diastolic end
are noted. The shape boundaries are indicative, since they can be properly tuned. No collapsed areas and skin/fat are included for clarity.

and a permittivity of [14]:

εmc(f) = 2.29 · 105 · (10−3f)−0.95 (10)

It is noted that due to blood circulation, when |δγl,blood|
is maximized, |δγheart| is minimized. Furthermore, piecewise

constant functions were selected instead of harmonic ones,

because the actual admittivity spectrums exhibit more complex

behavior than a single harmonic. The model’s accuracy can be

further improved using proper regression models, which is not

a part of this work.
The muscle tissue, which exists between bones and lungs

has a permittivity set in a similar way to γheart above.

Nonetheless, 180o phase shift has been added, due to the

circulation cycle behavior. Moreover, we defined δσm = 0.01,

σmo = 0.28 (S/m), δεm = 900 (F/m) and εmo = 13 · 103
(F/m) [12].

The skin-fat (a thin inner layer near the boundary) admit-

tivity is assumed to be constant at very small values (i.e. less

than 0.03 S/m) [12], [13].

C. Silent spaces and collapsed areas
At the end of each breath, after the exhalation-end, a small

silent time-space usually follows, where no breath activity

is recorded. This space is included in the dynamic model’s

behavior and can be defined between 0.3 and 1.5 seconds.

When each silent space ends, a new breath cycle begins with

the inhalation process.
Chronic clinical conditions of lungs, such as Acute Res-

piratory Distress Syndrome (ARDS) may cause inflammatory

edema that induces regional collapses [15]. This practically

means that lungs do not homogeneously function, with some

areas not inducing sufficient air volume. This is modeled by

inducing 4 possible collapse cases (proportional to the area of

collapse) at the left lung and 3 possible cases for the right lung.

The selected collapsed area’s admittance is not affected by the

ventilation cycle state, contrary to the rest of the corresponding

lung.

TABLE I: 2-D Thoracic Model Parameters

Parameter Description

∂Ωinh domain’s boundary at inhalation

∂Ωexh domain’s boundary at exhalation

Binh
n , B �= heart tissue/electrode polygons at

inhalation-end

Bexh
n , B �= heart tissue/electrode polygons at

exhalation-end

Hd
n heart shape at end-diastolic phase

Hs
n heart shape at end-systolic phase

tpulse pulse duration (secs)
tbr breath duration (secs)
zelec electrode contact impedances (Ω)
delec electrode width (cm)
γl standard lung admittance (σl, εl)
Δγl,air total lung admittance variation due

to the breath (δσl,air, δεl,air)
Δγl,blood total lung admittance variation due

to the HR (δσl,blood, δεl,blood)
γho standard heart admittance

(σho, εho)
Δγho total heart admittance variation due

to the HR (Δσho,Δεho)

D. Electrode modelling

The electrodes are modelled as rectangular 2D shapes, with

an adjustable width delec. Their contact impedance relative to

area, is approximated by the following formula:

ρelec = Zelec
S

delec
(11)

where Zelec is the electrode’s contact impedance and S the

corresponding surface area.

IV. EXECUTION PROCESS

The process begins with the initialization of the total tissue

and electrode positions, as well as their admittance properties

in the time domain, according to the model and measurement

input parameters. A .lua script is opened and processed via

MATLAB and time-constant properties (bone conductivity and
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set initial parameters
(Q, P, timesteps, 
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model_params
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      set FEMM 
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set FEMM geometry 

set current source/ 
 reference  in .lua

measure voltages
     in FEMM

 update ventillation/ 
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Pause MATLAB 
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Fig. 3: Explanatory diagram of the process performed for the temporal thoracic model execution in FEMM and the measurement collection
from MATLAB.

permittivity, collapsed areas, e.t.c.) are set. It is also noted,

that the input domain’s boundary (∂Ωinh and ∂Ωexh), as well

as the tissues’ respiratory end boundaries (Binh
n and Bexh

n )

are derived from a CT scan [16], considering a lung volume

change of 15% and chest movement of 1 cm (5% vertical

change) [5]. The user can also choose to randomize all bound-

aries, with a standard deviation of 5%. Both initial ventilation

and circulation states can also be randomly selected.

For each discrete time step (i.e. current injection, see section

II), the tissue current positions and admittances are updated

according to the pre-defined sequence (see 1st step). FEMM

is instructed to construct the corresponding structure and

perform voltage measurements on the electrodes. Furthermore,

both ventilation and circulation states are checked. When a

breathing cycle ends, a silent space begins that lasts up to

1 second. If a silent space has ended, a new breath cycle

begins, with a duration that differs from the previous one at a

maximum of 20%. Then, P is recomputed and the tissues’

discrete positions and temporal admittances are redefined

according to equations (1), (2) and (7). In addition, every

3 circulation cycles, HR changes randomly at a maximum

of 2% (assuming calm patient state). In this case, Q, heart

tissue discrete positions and each tissue’s blood-cycle related

admittance variation in time are redefined according to (3), (4)

and the piecewise linear functions defined in section II. The

updates and checks described are repeated until the final time

step simulation tend is reached.

When the loop is exited, a .lua script is created and

MATLAB pauses in order to execute the script using the

FEMM software. The latter automatically follows the steps

TABLE II: Measurement Parameters

Parameter Description
N Number of electrodes
f Current signal frequency (Hz)
I Current signal amplitude (mA)
m Current skip-pattern
n Voltage skip-pattern
n Voltage skip-pattern
n Voltage skip-pattern
tfr Time needed for each frame

(fps−1)
tend Total simulation time (secs)

written in the .lua file, efficiently recreating and remeshing the

structure at each time step. Electrode potential measurements

are written in text files, which are then parsed and assembled

by MATLAB according to the selected measuring pattern.

Finally, measurements are utilized as inputs to an inverse

reconstruction algorithm, where proper hyperparameters are

selected.

The process flow is demonstrated in Fig. 3 and the previ-

ously selected measurement parameters are presented in Table

II. The code written for this development is available under an

open-source license at https://github.com/chdim100/Dynamic-

Thoracic-Model-for-EIT .

V. SIMULATIONS AND RESULTS

To evaluate the proposed simulation model, a number of

simulation cases were derived. In particular, N = 16 and

N = 32 electrodes are selected for simulation test cases

of 6 second duration. Imaging is performed at 5, 10 and

30 fps for a current frequency of 200kHz. During each
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frame, the shape and admittance properties of each tissue are

dynamically changing, as described in previous sections. The

current skip−2 measuring protocol is used in the 16-electrode

simulations, while for the 32-electrode cases we selected the

current skip − 4 pattern. In both electrode cases, differential

voltages are measured from adjacent electrode pairs (voltage

skip− 0).

The model parameters are initialized as follows: the inspi-

ration and expiration end positions are defined according to a

specific CT scan (where boundaries are used as mid-points)

[16]. The shapes are not further processed via randomization.

In order to get clear comparisons, initial breath time is set

to 3 seconds, while silent space is set to 0.3 seconds (non-

random). Within the 4th second of the simulation, a 2nd breath

cycle begins, which has a duration of 3.6 seconds (increased

by 20%) and is not completed until the simulation ends. The

HR is 75 bpm for the first 3 beats, and then increases to

77.25 bpm (+3% increment). The right lung is assumed to be

healthy, while a lung collapse that corresponds to the 20% of

the total left lung’s modeled area is inserted. The whole time-

evolution of each dynamic tissue’s impedance is demonstrated

in Fig. 4.

The electrodes are assumed to have a width of d = 0.5 cm

and relative conductivities with a mean value of 0.02 (S/m)

and 15% standard deviation, since in real EIT cases, contact

impedances always have a variation [17]. The values above are

computed using (11), assuming E[zelec] = 1kΩ (dry electrode

at 200 kHz for long-term monitoring [18]).

The FEMM time-variant F.E. model includes ∼ 7000−7500
nodes and ∼ 12000 − 14500 elements, dependent on the

number of the electrodes and the boundaries state. Remeshing

is performed at each discrete time step (which as referred

corresponds to a bipolar current source position).

For the time-differential image reconstructions, the Gauss-

Newton iterative algorithm has been evaluated. The relative

conductivity (or admittance) estimation problem can be de-

scribed as minimization of the following expression [1]:

argmin
δσ

{‖Jδσ − δV ‖2W + λ2 ‖δσ‖2Q} (12)

Where δσ is the conductivity change under estimation, δV
the electrode-measured differential potentials, J the Jacobian

matrix around a linearization point σ = σo, which actually in-

dicates the potential field’s sensitivity to conductivity changes.

W is a weight matrix, used for calibrating the imbalanced

electrode contacts, λ a regularization hyperparameter and Q
a prior filter matrix [1]. The function under minimization in-

cludes a least-square term and a penalizing regularization term

(‖δσ‖2Q), in order to encounter the problem’s ill-posedness and

ill-conditioning [1].

The imaging process is performed in MATLAB using the

EIDORS library tool [8]. Reconstructions take place on a de-

fault EIDORS static thorax-shape F.E. model, which contains

1024 elements. The hyperparameter is heuristically selected

λ = 0.25 for the 16-electrode cases and λ = 0.03 for the 32-

electrode cases. In addition, Gaussian noise has been added

so that the simulated measurements for all cases have a 50

dB SNR which is a moderate noise level for ventilation EIT

silent space1st breath 2nd breath silent space1st breath 2nd breath

Fig. 4: Temporal tissues admittances defined for the simulation (200
kHz). Heart and muscle tissue permittivities are almost equal.

measurements [7]. It is noted that for high frame rate levels,

averaging which increases the signal’s SNR is not possible,

hence reducing the frame rate level is often preferred for

SNR optimization [3]. However, lower fps levels obscure

significant temporal information about both ventilation and

cardiac-related functions. In order to examine the way lower

noise reduces spatial imaging artifacts, a 65 dB SNR signal

case has been added for the lower frame rate test cases (5 and

10 fps).

The time evolution of the reconstructed images for 16 and

32 electrodes and each frame rate and noise testcase is shown

if Fig. 5. Furthermore, to get quantitative information and

a clearer comparison of the images’ temporal behaviors, we

have segmented 3 constant Regions of Interest (ROIs) in the

inverse reconstruction model (Fig. 6 VI). The first two regions

correspond to the areas considered as lungs while the third

demonstrates the heart tissue’s area. For each ROI, the mean

estimated conductivity values over its elements are computed

and displayed in the time domain in Fig. 6 (I-V).

In all cases, the breathing activity is successfully detected,

since two large conductivity curve ”valleys” appear in ROIs I

and II (Fig. 6). Their behavior follows the lung admittance evo-

lution shown in Fig. 4. In both the 16 and 32 electrodes config-

urations, when imaging at low fps (5 - 10) the contribution of

the SNR’s increase from 50 to 65 dB is observable, since the

images’ artifacts are descreased, and the curves in Fig. 6(I-

IV) are smoother, appearing less intense random variations.

Increasing the fps rate, leads to aqcuiring more information

about some details that can be utilized for further functional

analysis [19], [20]. In addition, higher frame sampling gives

a more reliable data for each breath’s exact depth (i.e. in this

example the two breaths are equal, however this is detectable

only for ffr > 10 fps, as observed in Fig. 6). At 30 fps,

the imaging quality difference between 16 and 32 electrodes

is clear, where in the latter, the left lung’s collapsed area is

detected without any post image processing (the left lung’s

impedance change area size is significantly lower that the right

ones). The lung, muscle and heart’s temporal behaviors due to

the blood cycle are still not noticeable without further time and

frequency domain analysis, however, for 30 fps some higher

frequency periodicity in ROI III can be slightly observed in

Fig. 6 V.
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Fig. 5: EIT image reconstruction of 2 breath cycles of the simulated dynamic model. The first column shows the 16-electrode configuration
images, while the second column depicts the 32-electrode case. Each sub-case is displayed in a particular gray frame. When the lungs are in
deflated state, the impedance changes are very low, since at all the performed simulations, the reference frame corresponds to full-exhalation
end. While the exhalation process takes place, the lung area’s impedance gradually decreases (darker blue colors), until it reaches the full-
inflated state. From this point the lung impedance begins to increase again and the exhalation part takes place. In order to distinguish the
differences between the cases temporal resolution, all the frames are figured.

VI. CONCLUSION

A high temporal resolution multiparameter thoracic sim-

ulation model for EIT was described in this paper. The

simulations are executed in MATLAB and FEMM software.

The effect of ventilation (breathing) and circulation (blood)

cycles on tissue movement and admittances was taken into
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I II

III IV

ROI I ROI II

ROI IIIV VI

Fig. 6: Mean estimated (arbitrary) values of each ROI over the time.
Case I: 16 electrodes, 5fps. Case II: 32 electrodes, 5fps. Case III: 16
electrodes, 10 fps. Case IV: 32 electrodes, 10 fps. Case V: 16 and
32 electrodes while imaging at 30fps. VI: the 3 ROI areas, related to
the inverse reconstruction model.

account during each frame measurement. For each frame,

the bipolar current source is shifted N times between the

electrodes and each one is considered as a discrete simulation

time step, giving a resolution of N time steps per frame. The

simulation model’s tunability can be further improved, with the

randomization of more thoracic sections and chest-types initial

boundaries. Extensive functional analysis and post processing

needs to be performed on the images, in order to acquire valid

medical data.
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